Chlorohydrin

Ethylene chlorohydrin

2-chloroethanol

107-07-3

203-459-7

Home ContactUs 中文 English
Yourlocation:Home >News> Binary Mixtures of Anisole with 2-Chloroethanol

Binary Mixtures of Anisole with 2-Chloroethanol

Time:2015/11/25 8:06:46

Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K


The density, viscosity, refractive index at (298.15, 303.15, and 308.15) K, and the speed of sound at 298.15 K in binary mixtures of anisole with 2-chloroethanol, 1,4-dioxane, tetrachloroethylene, tetrachloroethane, dimethyl formamide, dimethyl sulfoxide, and diethyl oxalate were measured over the entire mole fraction range of the binary mixtures. Using these data, the excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility were calculated. The computed quantities were fitted to the RedlichKister equation to derive the coefficients and estimate the standard error values.


[Carcinogenic activity of ethylene oxide and its reaction products 2-chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. I. Carcinogenicity of ethylene oxide in comparison with 1,2-propylene oxide after subcutaneous administration in mice (author's transl)].


Ethylene oxide is an important initial product for a number of organic compounds and, in addition, is used in the medical field for sterilization. The aim of our experiments was to test ethylene oxide and, as a comparative substance, 1,2-propylene oxide in respect to their cancerogenic effectiveness in animal experiments. Ethylene oxide was administered subcutaneously in three dosages (1.0; 0.3 and 0.1 mg single dosage per mouse) once per week to groups of 100 female NMRI mice respectively. In the case of 1,2-propylene oxide, four dosages were used (2.5; 1.0; 0.3 and 0.1 mg single dosage per mouse). The vehicle was tricaprylin. Administrations were carried out over a period of 95 weeks. The mean total dosage per mouse in the case of ethylene oxide amounted to 64.4; 22.7, and 7.3 mg and, in the case of propylene oxide, to 165.4; 72.8; 21.7 and 6.8 mg. Both substances induced local tumours depending upon the dosage. There were mostly fibrosarcomas. In the case of the groups treated with ethylene oxide the frequency was between 11 and 5% and in the case of the groups treated with 1,2-propylene oxide this was between 16 and 2%. The cancerogenic effect of ethylene oxide and 1,2-propylene oxide determined in animal experiments could, therefore, be confirmed statistically. On the basis of the results presented in this paper, new aspects have arisen for the medical evaluation of ethylene oxide residues in the field of manufacturing and use and in respect to the TLV.